FXYD5 modulates Na+ absorption and is increased in cystic fibrosis airway epithelia.

نویسندگان

  • Timothy J Miller
  • Pamela B Davis
چکیده

FXYD5, also known as dysadherin, belongs to a family of tissue-specific regulators of the Na(+)-K(+)-ATPase. We determined the kinetic effects of FXYD5 on Na(+)-K(+)-ATPase pump activity in stably transfected Madin-Darby canine kidney cells. FXYD5 significantly increased the apparent affinity for Na(+) twofold and decreased the apparent affinity for K(+) by 60% with a twofold increase in V(max) of K(+), a pattern that would increase activity and Na(+) removal from the cell. To test the effect of increased Na(+) uptake on FXYD5 expression, we analyzed Madin-Darby canine kidney cells stably transfected with an inducible vector expressing all three subunits of the epithelial Na(+) channel (ENaC). Na(+)-K(+)-ATPase activity increased sixfold after 48-h ENaC induction, but FXYD5 expression decreased 75%. FXYD5 expression was also decreased in lung epithelia from mice that overexpress ENaC, suggesting that chronic Na(+) absorption by itself downregulates epithelial FXYD5 expression. Patients with cystic fibrosis (CF) display ENaC-mediated hyperabsorption of Na(+) in the airways, accompanied by increased Na(+)-K(+)-ATPase activity. However, FXYD5 was significantly increased in the lungs and nasal epithelium of CF mice as assessed by RT-PCR, immunohistochemistry, and immunoblot analysis (P < 0.001). FXYD5 was also upregulated in nasal scrapings from human CF patients compared with controls (P < 0.02). Treatment of human tracheal epithelial cells with a CFTR inhibitor (I-172) confirmed that loss of CFTR function correlated with increased FXYD5 expression (P < 0.001), which was abrogated by an inhibitor of NF-kappaB. Thus FXYD5 is upregulated in CF epithelia, and this change may exacerbate the Na(+) hyperabsorption and surface liquid dehydration observed in CF airway epithelia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Anion Transport without Increased Sodium Absorption Characterizes Newborn Porcine Cystic Fibrosis Airway Epithelia

Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and trach...

متن کامل

Inositol polyphosphate derivative inhibits Na+ transport and improves fluid dynamics in cystic fibrosis airway epithelia.

Amiloride-sensitive, epithelial Na(+) channel (ENaC)-mediated, active absorption of Na(+) is elevated in the airway epithelium of cystic fibrosis (CF) patients, resulting in excess fluid removal from the airway lumen. This excess fluid/volume absorption corresponds to CF transmembrane regulator-linked defects in ENaC regulation, resulting in the reduced mucociliary clearance found in CF airways...

متن کامل

Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia

A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-mum periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to >or=7 microm are poorly understood. Using bumetanide as an inhibitor of Cl- secre...

متن کامل

Prostasin expression is regulated by airway surface liquid volume and is increased in cystic fibrosis.

Airway surface liquid (ASL) absorption is initiated by Na+ entry via epithelial Na+ channels (ENaC), which establishes an osmotic gradient that drives fluid from the luminal to serosal airway surface. We and others have recently reported that a protease/anti-protease balance regulates ENaC in human airway epithelial cells (HAEC) and provides a mechanism for autoregulation of ASL volume. In cyst...

متن کامل

Understanding the cellular mechanism for inhaled hyperosmotic saline therapy for patients with cystic fibrosis. Focus on "Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors".

SINCE THE FIRST CLINICAL TRIALS on inhaled hyperosmotic saline therapy (HS) in cystic fibrosis (CF) patients (3, 9), HS has proven to substantially improve a number of critical measures of lung function and, thus, is now considered a first-line therapy for these patients (2). One mechanism believed to link CF genotype to phenotype is abnormalities in properties of the airway surface liquid (ASL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 294 4  شماره 

صفحات  -

تاریخ انتشار 2008